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LElTER TO THE EDITOR 

Thermodynamics of systems of finite sequences 

Wojciech Wiilicki 
Institute for Nuclear Studies, Warsaw, Poland 

Received 1 August 1989, in final form 1 November 1989 

Abstract. It is proposed that the Hamming distance between bit-strings plays the role of 
interaction energy. The statistical sum and thermodynamic functions are calculated for 
the canonical ensemble of bit-sequences. The method is illustrated with an ensemble of 
two-sequence systems which evolve according to cellular automata rules. 

Recently much attention has been devoted to developing new tools to study high- 
dimensional dynamical systems, e.g. many-body and fluid mechanics, neural networks 
and lasers. The complexity of the objects under consideration requires effectively 
computable methods to characterise their behaviour. There exists a wealth of nonlinear 
models too complex for analytical treatment. Algorithmic methods, however, often 
render difficult any synthetic approach to the process and results of computations are 
often treated as experimental data. Let us imagine the situation when the system we 
are studying consists of a number of outputs of computations represented as finite 
sequences of symbols. The state of our system depends on inputs and by changing 
inputs randomly one can form the ensemble of outputs. A single sequence of symbols 
is considered here as the basic constituent, analogously to a molecule in physical 
systems such as gases or crystals. For simplicity we take into account only a two-symbol 
alphabet, i.e. strings composed of zeros and ones. Extensions to larger numbers of 
symbols are straightforward. We show the possibility of constructing thermodynamic 
characteristics of the output ensemble and thus describe the formal system it represents. 
We illustrate this method by studying in more detail the simple example of the two-string 
system evolving according to the rules of legal class-3 automata. 

Let us consider a system consisting of N bit-strings of length M, i.e. sequences 
built from M Os and 1s. We allow the set of strings to have a relation structure specified 
by the set of links between elements. Of interest to us are connected sets, i.e. those 
where a path exists for any pair of elements. In the extreme case there may exist a 
link between each pair of strings and we call this the maximum connection scheme. 
The state of our system is completely described by specifying the connection scheme 
and values of bits (0 or 1) in each string. 

If two strings are connected by a link we call them interacting elements and we 
propose an analogue of the energy for this interaction. For given two strings SI and 
S2 we identify the energy EI2 with the Hamming distance between them, i.e. the number 
of bits which differ by 

El2 = d ( S , ,  S2) (1) 

where d ( S , ,  S 2 )  is the number of 1s in the string S,OS,. Symbol 0 stands for 
exclusive-or operator. To make this definition more intuitive we recall the interpretation 
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of the Hamming distance as the minimal number of bit-flips necessary to make two 
strings identical. In other words, production of SI,*) from costs at least d ( S , ,  S 2 )  
elementary energy units. 

Generally, we call the sum of E,  over all links (i, j )  the energy of the given state 

E A =  E,. (2) 
( 4 1 )  

In order to find thermodynamic characteristics we use standard statistical mechanics 
methods (Huang 1963) and define the partition function ZN of the fixed-N system as 

where Eh stands for energy of the kth state and we shall call the formal parameter P 
the inverse temperature. 

In many cases the energy spectrum is known; Z ,  can be calculated explicitly and 
then the energy U and the entropy S can be found by using the formulae 

a 
aP 

U = --(log Z,) 

1 

(4) 

( 5 )  

It should be mentioned here that the term ‘entropy’ is often used in the literature in 
the other sense. For example, the Kolmogorov entropy and ‘thermodynamic’ entropy 
defined here are not the same thing. 

On the other hand it is often possible to estimate the probability of finding a state 
of energy E k  and calculate the mean energy ( E )  of the system from combinatorics. 
Comparing ( E )  found in this way and U from (4) one gets the equation 

( E )  = U(@). ( 6 )  
Equation (6) should be solved in order to get the equilibrium temperature. 

As the simplest non-trivial case let us consider two interacting random strings of 
length M with n ,  and n ,  1s. Without loss of generality we may assume n ,  6 n , .  The 
equilibrium probability for the state of energy Eh = 2k + n,  - n ,  in the canonical 
ensemble is given by (cf, e.g., Huang 1963) 

where 
p k  =exp[-Pt2k+n,-nl) l lZ2 (7)  

k m a x  

Z , =  exp[-P(2k+ n 2 -  a , ) ]  
k = O  

and 
for n ,  + n, s M 
for n , + n , >  M. (9) 

For random strings the probability P k  can be found from combinatorics and is equal to 

p k = ( n l ) (  k k + n , - n ,  M - n ,  )(3-I 
For the ensemble of random strings the mean energy is 

k = O  
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Let us take the special case of n,  = n2 = n and M 2 2n, corresponding to two strings 
produced by the same source with probabilities n /  M and 1 - n /  M for producing 1 
and 0, respectively. We require the strings to be distinguishable, i.e. that the minimal 
energy be greater than zero. The partition function in this case is equal to 

n 

Z,  = 2 e-2pk = (1 -e-2p”)/(e2P - 1). 
k = l  

For sufficiently long strings the statistical sum (12) in its asymptotic form reads 

The energy U calculated from (4) is equal to 

i ~ = 2 / ( 1  -e-2p) (14) 

T =  1 / p  = -110 2 g - ‘ ( 1 - 2 / ( a ) .  (15) 

s=log(f(E)- l ) -~(E)log(l-2/(E))  

and from (6) follows the formula for equilibrium temperature 

The equilibrium entropy ( 5 )  is given by 

= 2/ T(e’’r - 1) -log( 1 -e-*”). (16) 

The entropy (16) is an increasing function of both the mean energy ( E )  and the 
temperature T. From (16) it also follows that for low temperature the entropy tends 
to zero. 

The statements above are valid generally for all long distinguishable strings with 
the same non-zero probabilities of finding 1, not necessarily random. In the random 
case the mean energy ( E )  can be calculated explicitly by using formulae (10) and (1 1). 
However, for long sequences the calculation of factorials in (10) may be difficult and 
in practice one has to determine ( E )  by Monte Carlo methods. The only simple case 
is n = M / 2  where the formula (cf, e.g., Gradshteyn and Ryzhik 1971) 

is to be applied and ( E )  = n. 
As an illustration of our method we consider time evolution of the entropy for 

simple cellular automata (Wolfram 1983). We will investigate six computational rules, 
so called legal class-3 automata. The rules are labelled with numbers 18, 22, 90, 122, 
126 and 150. 

Our starting point is the ensemble of a thousand pairs of random strings with equal 
probabilities of 1s and Os. To fulfil the requirements for applying asymptotic thermo- 
dynamic formulae we take strings of length 20 000. For each pair of the ensemble the 
evolution is followed up to one hundred steps, the energy (Hamming distance) calcu- 
lated at each step and averaged over the ensemble. Then the entropy is calculated by 
using the formula (16). 

It is known that for some rules densities of 1s do not remain constant during 
evolution. We have found the probabilities of 1s after one hundred steps to be equal 
to 0.26,0.35,0.55,0.50,0.51 and 0.50 for rules 18,22,90, 122, 126 and 150, respectively. 
For comparison, the numbers observed by the other authors (Kaspar and Schuster 
1987) are 0.25, 0.35, 0.5, 0.5,0.5 and 0.5. In order to show that the observed behaviour 
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of the entropy is not produced by the variable density of 1s itself we have studied the 
ratio S / S r a n d ,  where S is the entropy for strings evolving according to a given rule and 
Srand is the entropy for random strings with actual numbers of 1s. 

The results obtained are displayed in figures 1-6 where the reduced entropy is 
presented for rules 18, 22,90, 122, 126 and 150, respectively. Inspection of the figures 
reveals that for rules 122 and 150 there is no significant deviation of S / S r a n d  from 1. 
For rules 18 and 22 the reduced entropy decreases. The effect is stronger for rule 18. 
Rule 90 exhibits slow relaxation to the constant value of 1 after an initial slight decrease. 
For rule 126, after an initial rapid fall, the S / S r a n d  remains approximately constant 
slightly below 1. 

Class-3 automata have been studied with a few other methods for complexity and 
pattern selection (Grassberger 1984, Kaspar and Schuster 1987, Wolfram 1984) and it 
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Figure 1.  Evolution of the reduced entropy of the 
two-string system for the automaton rule 18. 
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Figure 3. Evolution of the reduced entropy of the 
two-string system for the automaton rule 90. 
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Figure 2. Evolution of the reduced entropy of the 
two-string system for the automaton rule 22. 
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Figure 4. Evolution of the reduced entropy of the 
two-string system for the automaton rule 122. 
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Figure 5. Evolution of the reduced entropy of the 
two-string system for the automaton rule 126. 
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Figure 6. Evolution of the reduced entropy of the 
two-string system for the automaton rule 150. 

has been found that no patterns appear for rules 90 and 150 and a reduction of the 
complexity was found for rules 18, 22, 122 and 126. Those investigations have been 
done for single strings. It is worth noting that the method presented here sheds light 
on the other feature of the automata, namely the ability to correlate chaotic sequences. 
Rules 18, 22 and 126 exhibit both complexity reduction and reduction of the entropy 
introduced in the present work. 
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